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The tandem allylic oxidation/oxa-Michael reaction promoted by the gem-disubstituent effect and the 2-methyl-6-nitrobenzoic anhydride (MNBA)-
mediated dimerization were explored for the efficient and facile synthesis of cyanolide A.

Schistosomiasis (also known as bilharzia) is a chronic,
debilitating parasitic disease caused by trematode flatworms
of the genus Schistosoma and the second most socioeco-
nomically devastating parasitic disease after malaria.> More
than 207 million people are infected worldwide, with an
estimated 700 million people at risk in more than 70 endemic
countries.? In sub-Saharan Africa, more than 200000 deaths
per year are attributed to schistosomiasis.

Due to the lack of a vaccine, patient therapy is heavily
dependent on chemotherapy with praziquantel, which cur-
rently is the only available treatment against all forms of
schistosomiasis.® Despite the success of praziquante!, relying
solely on a single drug to treat 200 million people is of
concern. Less than 10% of people requiring treatment are
reported to obtain praziquantel. In addition, there are
concerns over drug resistance and side effects.
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An even greater challenge to schistosomiasis control is
the complex lifecycle of the parasite that requires both an
aquatic snail vector and a mammalian host to complete their
reproductive cycle.* Snails such as the genus Biomphalaria
act as intermediate hosts in the life cycle of the parasitic
trematodes. As a result, eradicating the disease in the
mammalian host with a drug like praziquantel does not
protect against reinfection from recurring exposure to water
containing snail hosts. Therefore, molluscicides have been
considered the most promising means to break the transmis-
sion cycle of the parasite.® Niclosamide is the most widely
used molluscicide available and effectively kills snails at all
stages of the lifecycle® However, it possesses major
disadvantages, including high cost, low water solubility and
dispersibility, and hazardous environmental effects. As a
result, considerable effort has been devoted to the identifica-
tion of novel molluscicides,” but none have proved effective
enough to substitute niclosamide.

Recently, Gerwick and co-workers used a simple mollus-
cicidal bioassay to screen marine cyanobacterial extracts and
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Scheme 1. Retrosynthetic Plan for Cyanolide A (1)
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reported the isolation and structure elucidation of cyanolide
A (1, Scheme 1), a new molluscicidal agent obtained from
a Papua New Guinea collection of Lyngbya bouillonii.
Compound 1 is a dimeric glycosidic macrolide consisting
of a centra 16-membered macrocycle fused with two
tetrahydropyrans and two xylose residues. The structure and
relative stereochemistry of 1 were determined by extensive
NMR spectroscopic analysis, but the absolute configuration
of 1 was tentatively assigned on the basis of a natural
p-configuration for the xylose residue and its structural
similarities to clavosolides A—D.° It exhibited highly potent
molluscicidal activity against Biomphalaria glabrata (L Csg
= 1.2 uM) but showed modest brine shrimp toxicity (LCsg
= 10.8 uM).

Due to both the great potential as a promising mollusci-
cidal compound for controlling schistosomiasis-carrying
snails of the genus Biomphalaria and the scarcity (0.1%
isolation yield) of cyanolide A (1), we sought to develop an
efficient and facile synthetic route that would be amenable
to the synthesis of gram-scale quantities of 1 and also to the
synthesis of analogues for further biological studies. Herein,
we report two efficient, facile, and complementary routes to
1 through a tandem allylic oxidation/oxa-Michael reaction
promoted by the gem-disubstituent effect and 2-methyl-6-
nitrobenzoic anhydride (MNBA)-mediated dimerization.
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Scheme 1 summarizes our approach for the stereoselective
synthesis of cyanolide A (1) from the readily available 1,3-
dithiane 7 and chiral epoxide 8. Since there were reports that
final glycosylation reactions of structurally similar substrates
with xylose derivatives generdlly gave the possible a,a- and
o,B-anomers in addition to the desired 3,4-anomer with low
diastereosaectivities and yields, ™ we decided to explore two
complementary routes to 1, dimerization—glycosylation and
glycosylation—dimerization strategies. In the dimerization—
glycosylation route, we envisioned that 1 could be assembled
by a glycosylation of macrolide 2 with a xylose derivative.
Macrolide 2 could be prepared by an asymmetric ethylation of
2,6-cis-tetrahydropyran methyl ester 5 followed by a dimeriza-
tion of hydroxy ester 4. In the glycosylation—dimerization route,
the synthesis of 1 could be accomplished by a dimerization of
monomer 3 gppendaged with the xylose moiety. Monomer 3
could be prepared by glycosylation followed by asymmetric
ethylation of 2,6-cis-tetrahydropyran methyl ester 5. Thetandem
alylic oxidation/oxa-Michael reaction of diol 6, which was
previously reported by our group,™* was anticipated to stereo-
sdlectively provide the key intermediate 2,6-cis-tetrahydropyran
methyl ester 5.

Scheme 2. Tandem Oxidation/Oxa-Michael and NHC-Catalyzed
Oxidation To Give the THP Ester 5
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The synthesis of cyanolide A (1) started with the preparation
of diol 6 for tandem reaction (Scheme 2). The coupling of the
known 1,3-dithiane 7** and chird epoxide 8 smoothly
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proceeded to set the stage for the key tandem allylic oxidation/
oxaMichad reaction. The one-pat dlylic oxidaion/oxa-Michadl/
oxidation of 6 (MnO,, CH,Cl,, 25 °C, 4 h, then dimethyl
triazolium iodide, MnO,, DBU, MeOH, MS 4 A, 25 °C,
12 h)* afforded the desired 2,6-cis-tetrahydropyran methyl
ester 5 (88%) as a single diastereomer without a trace of the
diastereomeric 2,6-trans-tetrahydropyran methyl ester. The
relative stereochemistry of the 2,6-disubstituted tetrahydro-
pyran 5 was determined to be cis by extensive 2D NOESY
study (see the Supporting Information). The excellent ste-
reoselectivity observed in the oxa-Michael reaction was
probably due to a highly rigid chairlike transition state
induced by “double gem-disubstituent effects” of C4-gem-
dimethyl and C5-1,3-dithiane groups. Importantly, the se-
guence of 1,3-dithiane coupling and tandem reaction was
highly stereoselective, operationally simple, and robust, and
it could be performed on a gram-scale.

Having established an efficient and facile synthetic route
to gram-quantities of the key intermediate 2,6-cis-tetrahy-
dropyran 5, the dimerization—glycosylation route was first
explored (Scheme 3). To stereoselectively install the C9-
hydroxyl group, we investigated the utility of 3-exo-mor-
pholinoisoborneol (MIB)-catalyzed asymmetric addition of
Et,Zn.*® Deprotection of the PMB group in 5 followed by
Parikh—Doering oxidation of the resulting alcohol 9 provided
aldehyde 10. Asymmetric ethylation of 10 in the presence
of Et,Zn and (+)-MIB provided the desired secondary
acohol 4 in 86% yield (dr = 7:1).*® The configuration of
the C9 stereocenter was assigned as (R) using Kakisawa's
extension of Mosher’s method'’ and later confirmed by
single-crystal X-ray analysis of 11.

With monomeric unit 4 in hand, we turned our attention
to dimerization to complete the synthesis of 1. Recently, in
arelated transformation, we found that Shiina s lactonization
protocol with MNBA® appeared to be an excellent method
for macrol actoni zation owing to its remarkabl e efficiency and
simple operation.*>*° Hydrolysis of 4 under basic conditions
followed by dimerization of the corresponding hydroxy
carboxylic acid (MNBA, DMAP, toluene, 90 °C, 12 h)
smoothly proceeded to provide dimeric macrolide 2 (53%
for two steps). Deprotection of the 1,3-dithiane group and
NaBH,-reduction of the corresponding ketone completed the
synthesis of cyanolide A aglycone 11.

After exploring a number of glycosylation conditions,
glycosylation of 11 with phenyl thioglycoside 12'% in the
presence of MeOTf?° proceeded smoothly to give the desired
p.p-anomeric cyanolide A (1) (21%) along with f,a-
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Scheme 3. Total Synthesis of Cyanolide A (1) via
Dimerization—Glycosylation Strategy
S0

Py-S0;
Et;N/DMSO/CH,Cl,
(1:1:10)  MeO,C”

0to25°C,2h
89%

DDQ
HZ0/CH,Cl, (1:10)[_
25°C, 1 h (94%)

Et,Zn, (+)-MIB

toluene/hexanes MeO,C
(1:2)

0°C,4h
86%

5, R=PMB
9,R=H

1. LiOH
S/j THF/MeOH/H,0
5 (2:1:1)
25°C, 14 h

2. MNBA, DMAP
toluene
90°C,12h
53% for two steps

(dr=T7:1)

1. |2
aq. NaHCO4/CH,CN (1:1)
0°C, 1 h(93%)

2. NaBHy4, MeOH
—40 to -20 °C, 2 h (96%)

MeOTF, MS 4A
E,0

-
SPh 25°C,48h
67%

Oﬁﬂ/\::rOMe
Ouome
Cyanolide A (1) (21%)

+ B,a-anomer (33%)
+ a,a-anomer (13%)

anomeric (33%) and o.,c.-anomeric (13%) isomers. The low
yield and stereosel ectivity of the glycosylation reaction have
been observed with structurally similar substrates.’® The
synthetic cyanolide A (1) proved identical in al respects with
the authentic natural product.® The optical rotation of our
synthetic 1 ([a]?®, —55.5, ¢ 0.33, CHCl53) was in agreement
with that of the natural 1 ([o]?%; —59, ¢ 0.6, CHCl5),
confirming the absolute stereochemistry of 1 proposed by
Gerwick and co-workers.®

Even though the dimerization—glycosylation route success-
fully completed the synthesis of 1, we thought that the fina
glycosylation step was not stereoselective and efficient enough
for the generation of a variety of carbohydrate analogues for
biological studies. To establish a more efficient method for the

(20) (a) Lonn, H. J. Carbohydr. Chem. 1987, 6, 301-306. (b) Watanabe,
H.; Nakada, M. J. Am. Chem. Soc. 2008, 130, 1150-1151. NBS-promoted
glycosylation of 11 (NBS, CHsCN, MS 4 A, —40 to 0 °C, 2 h) gave a
lower stereoselectivity.
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Scheme 4. Total Synthesis of Cyanolide A (1) via
Glycosylation—Dimerization Strategy
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installation of the xylose moiety, we investigated an aternative
glycosylation—dimerization route (Scheme 4).

The key intermediate 2,6-cis-tetrahydropyran 5 was con-
verted to secondary alcohol 13 by deprotection of the 1,3-
dithiane group in 5 followed by NaBH,-reduction of the
corresponding ketone.”* Glycosylation of 13 with phenyl
thioglycoside 12 in the presence of MeOTf smoothly
proceeded to afford the desired S-anomeric monomer 14
(66%) along with a-anomeric monomer (18%).% We were
pleased to observe the improved stereoselectivity in the
glycosylation step (1.3:1 to 3.7:1).%

(21) Therelative stereochemistry at the C5-position in 13 was determined
by 2D NMR analysis of its corresponding acetate (see the Supporting
Information).

(22) NBS-promoted glycosylation of 13 (NBS, CH:CN, MS 4 A, —40
to 0 °C, 2 h) gave a complex reaction mixture due to partial deprotection
of PMB group under the reaction conditions.
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PM B-deprotection of 14, TPAP-oxidation, and (+)-MIB-
catalyzed asymmetric addition of Et,Zn afforded the desired
C9(R) secondary alcohol 3 with good diastereosel ectivity (dr
= 6:1, 81%). Hydrolysis of the methyl ester group in 3 and
MNBA-mediated dimerization of the resulting hydroxy
carboxylic acid provided cyanolide A (1) with excellent yield
(93% for two steps). The chemoselective nature of tandem
allylic oxidation/oxa-Michael reaction, the efficiency of
dithiane coupling reactions, and the improved stereoselec-
tivity in the glycosylation step enabled an efficient and facile
synthesis of cyanolide A (1) (10 steps, 22% overdl yield
from the readily available known 7 and 8).

In summary, we completed the stereoselective synthesis
of cyanolide A (1) from the readily available 1,3-dithiane 7
and chira epoxide 8 through two complementary routes,
dimerization—glycosylation and glycosylation—dimerization.
We applied atandem allylic oxidation/oxa-Michael reaction
of 6 to the synthesis of 2,6-cis-tetrahydropyran 5. For the
dimerization step, we explored the MNBA-mediated |acton-
ization protocol to demonstrate its high efficiency and simple
operation. The glycosylation—dimerization route proved
more efficient for the synthesis of 1. Comparison of synthetic
1 ([0]®p) with natural 1 enabled the confirmation of the
absolute stereochemistry of the natural product. These
synthetic routes would be broadly applicable to the efficient
synthesis of a diverse set of cyanolide A (1) analogues for
further biological studies.
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